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ABSTRACT 

We present a method for atmospheric estimation in hyperspectral longwave infrared (LWIR) data. The 

method also involves the estimation of object parameters (temperature and emissivity) under the 

restriction that the emissivity is constant for all wavelengths. The method is analyzed with respect to its 

sensitivity to noise and number of spectral bands. Simulations with synthetic signatures and signatures 

from real vegetation are performed to validate the analysis. 

The proposed method allows estimation with as few as 10–20 spectral bands at moderate noise levels. 

Using more than 20 bands does not improve the estimates. 

1.0 INTRODUCTION 

Multi- and hyperspectral image exploitation is a growing field both in remote sensing within the civilian 

community and in defence applications such as reconnaissance and surveillance. Multi- and hyperspectral 

electro-optical sensors (cameras) sample the incoming radiation at several (multispectral sensors) or many 

(hyperspectral sensors) different wavelength bands. Compared to a consumer camera that, typically, uses 

three wavelength bands, corresponding to the red, green and blue colours, hyperspectral sensors sample 

the scene at a large number of wavelengths (spectral bands), often several hundred. Moreover, these 

spectral bands can be beyond the visible range, i.e., in the infrared domain. Each pixel thus forms a vector 

of measurements from the different bands. This vector, the observed spectral signature, contains 

information on the material(s) present in the scene, and can be exploited for detection, classification, and 

recognition. 

At some wavelengths, the influence of the atmosphere between the observed object and the sensor is 

significant, and it is often necessary to perform atmospheric correction before further processing.
1
 Effects 

of the atmosphere are typically known to some degree; there are standard simulation tools that provide 

good approximations. This paper treats methods for refining these approximations from observed spectral 

signatures of unknown objects, i.e., in-scene atmospheric estimation. 

1.1. Scenario 

A quite specific scenario is considered in this paper, which leads to several assumptions in the treated 

estimation problems. In our scenario, a reconnaissance aircraft equipped with a nadir-looking sensor has 

passed over an area, and we want to analyze the observed objects on the ground. The flight altitude is 

approximately one kilometer. Since we know the time, date, and location, we also have a quite good idea 

of the atmosphere parameters: humidity and temperature profiles, aerosol and carbon dioxide contents can 

be read from standard atmosphere models and adjusted using local measurements (e.g., the aircraft can 

measure the air temperature). 
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The sensor is a hyperspectral sensor in the longwave infrared (LWIR) domain with around 200 spectral 

bands in the 7.5–12 µm interval. 

The final goal of the problem studied here can be formulated as follows: Given a hyperspectral 

observation of a scene in the longwave infrared domain, estimate the emissivity spectrum and the 

temperature of the observed objects. This problem is commonly referred to as temperature-emissivity 

separation (TES), and we will study a special case where we put heavy restrictions on the emissivity. 

A first step in the TES process is to be able to correct for the atmospheric influence on the observation. 

The immediate goal of this study is therefore to estimate relevant atmosphere parameters. This is however 

not completely separable from the TES problem, and, in fact, for certain special cases, the TES problem is 

solved simultaneously. The secondary goal is to establish sensor requirements, i.e., how many spectral 

bands are needed at what noise level. 

1.2. Related work 

Despite a large research effort on atmospheric estimation and correction and its impact on detection, there 

is little work with the same focus as here, i.e., focusing on minimal sensor requirements. Also, the 

methods in the literature require either high-resolution spectral data, or use spectral features in other 

wavelengths than the ones we study here.
2, 3

 

The most well-known methods for atmospheric correction are probably AAC
4
 and ISAC.

5
 Extensions 

include ARTEMISS,
6
 where a database of atmospheric transmissions is used and a smooth emissivity 

spectrum is retrieved. The type of parameterized models for the atmosphere that we use here is also used 

by Fox et al.
7
 and Chandra et al.

8
 The impact of atmospheric correction on target detection is studied by 

Yuen and Bishop.
1
 

1.3. Outline 

Section 2 explains how we model the observed objects, the atmosphere, and the sensor. In order to adapt 

the models to observed data, their parameters are estimated using the optimization procedures described in 

Section 3. These optimization procedures are analyzed with respect to sensitivity in Section 4 and 

simulations are performed to validate the analysis and to examine the effects of different spectral 

resolutions in Section 5. Conclusions are drawn in Section 6. 

2. MODELLING 

In this section, we describe how we model the three important entities present in our scenario: the 

observed object, the atmosphere, and the sensor. The type of models used is non-controversial, even if 

other modelling methods exist, for example subspace models
8
 and databases.

6 

2.1. Overview 

We want to estimate and study the thermal radiance from an object (or from several objects) represented 

by a vector Lo or a continuous function Lo (λ). 

In a laboratory setting, where the sensor is close to the object, the problem would be considerably less 

complicated. In our scenario, the sensor is airborne around one kilometer above the observed objects, and 

we thus need to take atmosphere effects into account. We model the atmosphere by a function A(·), and 

the at-sensor radiance Ls is thus a function Ls (λ) = A(Lo (λ)). 
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Disregarding any spatial effects, the sensor is modelled as a global scaling factor and as a spectral filter for 

each spectral band. The spectral filtering is the function that samples a continuous function L(λ) and 

outputs a measurement vector z. The sensor is modelled by a function S(·), and our observation vector is 

modelled by z = S( Ls(λ) ). 

Below, some details about sensor, atmosphere, and object models are given. 

2.2. Discretization 

In practice, we perform all computations on wavelength-discrete vectors. The resolution of these vectors 

are either determined by the sensor’s spectral resolution or by the high-resolution simulations performed 

by MODTRAN. These simulations give high-resolution transmission/radiance vectors (every inverse 

centimeter) that for our purposes serve well as (approximately) continuous functions. The blackbody 

function determining the object radiance can naturally be computed in any resolution. 

2.3. Sensor model 

Recalling that we do not make any spatial considerations here, the sensor can be modelled purely as a 

spectral function S : L2
→R

N
. The sensor inputs an observed radiation L(λ) (a continuous function of λ) and 

outputs a discrete vector y of N measurements. Each measurement yn is a sample of L(λ), and it is sampled 

using a response function Rn(λ) centered around λn. The response function Rn(λ) is typically modelled as a 

Gaussian function with a certain width δn. The sampling is thus expressed by a function P : L2
→R

N
 such 

that P( L(λ) ) = [P1( L(λ) ), . . . , PN( L(λ) )]
T
. Unfortunately, the sensor is not perfectly linear, but we will 

in the following assume that the sensor is calibrated as to be linear and with a global scaling factor s 

compensating for variation in gain and flight altitude. Thus, we model the measurements as 

yn = Sn( L(λ) ) = s · Pn( L(λ) ). 

The discrete sensor function samples high-resolution vectors using the Gaussian spectral filter. Our 

discrete sensor model, is 

S(L) = [S1(L) … SN(L)]
T
 

which we can write in matrix form so that 

S(L) = s P L. 

2.4. Atmosphere model 

The atmosphere between the observed object and the sensor influences the observed signature due to 

transmission, radiance, and spatial distortion (the latter due to turbulence or scattering into the path). 

Again, disregarding spatial effects, we model the atmosphere as a spectral function A : L2
→L2

. The 

atmospheric transmission is modelled as a multiplicative transmission in each wavelength, and since the 

atmosphere is also a source of radiation in itself, the model of the observation is 

A( L(λ) ) = τ(λ) · L(λ) + L
↑
(λ), 

where L
↑
 is the up-welling path radiance. Note that this model of the atmosphere assumes a homogeneous 

layer of air between the sensor and the observed object. 

The atmosphere is variable in temperature and humidity (the water vapour content), and these parameters 

influence the atmospheric transmission and radiance. Assuming that the atmospheric transmission τd(λ) 
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without water vapour and the transmission of (a certain amount of ) water vapour τv(λ) are known, we can 

parameterize the atmospheric transmission as 

τ(w,λ) = τd(λ) · τv(λ)
w
,   (2) 

where the humidity scaling w is the relative amount of water vapour, i.e., w = v/v0, where v is the actual 

amount of water vapour and v0 is the amount of water vapour giving the transmission τv(λ). 

The atmosphere radiance depends on the atmospheric transmission and the temperature profile ta(z), i.e., 

the air temperature at each altitude z. Here, we simplify the temperature profile to a constant ta and thus 

use a one-layer atmosphere model. The emissivity spectrum of the atmosphere is c(λ) = 1 − τ(λ), and the 

radiance is thus expressed as 

L
↑
(w, ta, λ) = (1 − τ (w,λ)) · Lbb (ta, λ)  (3) 

In the discrete case we have τ(x) = T(w) x, where T(w) = diag( τ(w) ) is a diagonal matrix with elements 0 

≤ τi ≤ 1. τ(w, λ) depends on the parameter w, as described above. The discrete atmosphere model is thus 

A(L) = T(w) L + L
↑
 = T(w) L + (I − T(w)) Lbb(ta),

 

where ta is the temperature of the atmosphere and Lbb(t) is the radiation from a blackbody with temperature 

t. Note that the equality (2) becomes an approximation in the discrete case. As long as w is close to one, 

the approximation is close to equality. 

The atmospheric transmission used in the experiments in this paper is a simulation of the transmission 

from ground level to one kilometer above, at midday of a Swedish summer’s day. From this, the up-

welling radiance can be computed according to (3). The down-welling radiance L
↓
(λ) is simulated for the 

same time. 

2.5. Object model 

The radiation at the wavelength λ from an object is the sum of the emitted and the reflected radiation. We 

write this as Lo(λ) = Ls(λ) + Lr(λ). The emitted radiation is characterized by the object’s emissivity 

spectrum c(λ) and its temperature to as Ls(λ) = c(λ) · Lbb(to , λ). In the following, we will consider the 

special case where the observed object is a graybody, i.e., c(λ) = c is constant for all wavelengths. The 

reasons for using this model are simplicity (two parameters only) and that we in a natural environment 

have a large chance of finding several graybody pixels. 

The reflected radiation depends on the incoming radiation E(λ) and the emissivity as Lr(λ) = (1 − c) E(λ) / 

π. Note that we neglect any directional effects here, i.e., we assume that the incoming radiation and/or the 

object surface is 100% diffuse. 

Returning to our scenario with an airborne, nadir-looking sensor, and also assuming that we have pure 

pixels, the discrete object radiance model at pixel coordinate u = (u,v) is 

Lo(u) = c(u) Lbb(to(u)) + (1− c(u))L
↓
 . 

where L
↓
 is the down-welling atmosphere radiance. 
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x 

2.6. Putting it together 

Summarizing the models above we can model the observed vector z at image coordinate u as 

z = S( A( Lo(u) ) ) = s P A( Lo(u) ) = s P ( T(w) Lo(u) + (I – T(w) Lbb(ta) ), 

where 

T(w) = diag( τd ) diag( τv
w
 ) 

and 

Lo(u) = c(u) Lbb(to(u)) + (1 – c(u)) L
↓
 

• τd, τv, and L
↓ 
are computed using MODTRAN. 

• The sensor is characterized by the parameters s, {δn}, and {λn}. 

• The atmosphere is parameterized by w and ta. 

• The object radiance is characterized by c(u), to(u), and L
↓
 . 

Given the parameters x = {s, ta, w, to, c} we have a generative model for the observation. Thus, we can 

write y as a function of a parameter vector x, i.e., y(x). 

2.7. Noise model 

In practice, the measured vector will not equal y exactly, since we have noise and model errors. We have 

model errors since none of the assumptions above are 100% true, and we have noise added by the sensor. 

We will model the noise as a being zero-mean, white, additive and with a probability distribution function 

monotonically decreasing with its square, for example the Gaussian distribution. Thus, our measurement 

will be z = y(x) + n, where n ∼ N(0,σ
2
). 

3. OPTIMIZATION PROCEDURE 

Minimizing the residual between an observation and a parameterized object-atmosphere-sensor model is 

an optimization problem in several variables. The problem is non-linear in some of the parameters and 

linear in some. 

Having a model vector y that depends on a parameter vector x and a measurement vector z, we estimate 

the parameters by minimizing 

f(z,x) = ||k(z,x)||
2
 = ||z – y(x)||

2
 

with respect to x. The objective function f is non-linear and a suitable optimization algorithm should be 

applied to find the optimal x. The problem is simplified by observing that c and s are linear parameters 

that can be solved for in a linear sub-problem given values on to, ta and w. Depending on our assumption 

about the object, this is done in slightly different ways. Using our previous assumptions on the noise, we 

solve in a least-squared sense, and our notation for a constrained linear least-squares problem is to find 

min ||Cxl − d||
2
 

constrained by Axl ≤ b. 
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X 

Given some basic knowledge about the world, we can easily set some constraints on [to, ta, w] as well. 

3.1. Single pixel case 

In the single pixel case we regard each pixel separately (or we have only one observation). The resulting 

linear sub-problems (i.e., the derivations of C, d, A, and b) for several cases are detailed in the report by 

Ahlberg.
9
 

3.2. Multiple pixel case 

When we have multiple (M) observations (pixels) from the same scene, the atmosphere parameters do not 

change much between the pixels, and in many cases also the sensor scaling should be quite constant. 

Assuming that these parameters really are constant over the scene, we can formulate a joint optimization 

problem where we estimate emissivities (c1, . . . , cM ) and object temperatures (to
1
, . . . , to

M
 ) for each pixel 

but sensor scaling, atmosphere temperature, and humidity scaling only once per scene, i.e., 

arg min || Z − Y(X) ||
2
 . 

 

where 

X = [to
1
 … to

M
  c1 …  cM  s  w  ta] 

Z = [z1
T
 … zM

T
]

T 

Y = [y1
T
 … yM

T
]

T
 

The non-linear problem min ||Z − Y(Xnl) ||
2
 is essentially the same as above, however with M + 2 

parameters, which makes it a computationally heavy problem. 

 

Figure 1. Residuals when perturbing the model parameters from the true values. Left: Object 
temperature. Right: Humidity. The true parameter values are ta = 280 K, c = 0.9, s = 1, w = 1. The 
true object temperature is varied: Solid line: 280 K, dash-dotted: 290 K, dashed: 300 K, dotted: 

310 K. 
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3.3. Large scene case 

When the scene is large, it is not feasible to perform the joint estimation using all pixels simultaneously. 

This is due to two reasons. First, the computational burden will be huge, since the dimensionality of the 

problem grows linearly with the number of pixels, and the complexity grows exponentially with the 

dimensionality. Second, the scene might contain many observations of materials that are not graybodies, 

meaning that the model error will be large. 

Although there are several approaches on detecting low-emissivity (near blackbody) objects,
10

 the topic is 

not extensively treated here. Instead, a straight-forward approach is proposed as follows. The input is an 

initial estimate of the atmosphere’s transmission and temperature. 

1. Select a random set of observations (K pixels). 

2. Perform atmospheric correction of these observations using the initial atmosphere estimates. 

3. Fit a graybody curve to each of the corrected observations. 

4. Select the observations with small enough fit errors. In practice, this thresholding is relatively 

simple. 

5. Among the remaining observations, select M observations with as different (estimated) 

temperatures as possible. 

6. Use the M selected observations to globally estimate the atmosphere parameters. 

Since K is typically much smaller than the number of pixels, this procedure can be run several times to get 

an estimate of the variance of the parameter estimates. 

Evaluation of robust estimation approaches should be done in the future. 

4. SENSITIVITY ANALYSIS 

The different parameters are not equally prone to estimation errors, and we investigate their sensitivity by 

generating a model vector y(x0) and then perturbing the parameters one by one, thus generating y(xi,j) 

where xi is perturbed j steps. For each parameter, we compute an error curve ej telling the mean square 

error over the residual vector, i.e., 

ej = || y(x0) – y(xi,j) ||
2
/N. 

We do this for a few different object temperatures, since the sensitivity is highly variable with the object- 

atmosphere temperature difference. Two of these curves are given in Figure 1, and it is apparent that the 

object temperature estimation is relatively robust, while the atmosphere humidity scaling is so sensitive 

that even small amounts of noise will make its estimate almost random. For equal object-atmosphere 

temperature, it is random even without noise. 
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Figure 2. The isocurves of the error at different atmosphere and object temperatures. 

 

Figure 3. The isocurves of the error when perturbing (pairwise) emissivity, object temperature, 
and sensor scale. 

4.1. Sensitivity of atmosphere parameters 

As seen in the previous subsection, the humidity estimate is very error-prone. Note, in particular, the case 

when the atmosphere has the same temperature as an observed blackbody, i.e., ta = to and c = 1. In that 

case 

Ls = T Lbb + (I − T) Lbb = Lbb, 

i.e., Ls does not anymore depend on the transmission T, and thus not on the humidity w. The humidity 

estimate will be random. 

Instead of plotting the error curve when perturbing the humidity parameter, the error surface when 

perturbing both atmosphere parameters is illustrated in Figure 2. In the middle graph, the object and 

atmosphere have equal temperatures, and the error will depend on the atmosphere temperature only. In this 

case we will still get a relatively robust estimate of the atmosphere temperature. However, for a larger 

object-temperature difference, we will be able to estimate the humidity, but the estimate is strongly 

correlated with the atmosphere temperature estimate. That is, an error in the atmosphere temperature 

estimation can easily be compensated by an error in the humidity scaling estimate. Alternatively, an error 

in the humidity estimate of 10% will lead to a bias of 2 K in the temperature estimate (this behaviour 

changes slightly for a graybody). 

The conclusions from this are: 

• The estimates of all parameters except atmosphere temperature become more robust with a larger 

object- atmosphere temperature difference. 
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• Sensor and object parameters are more robust than atmosphere parameters, and the humidity 

parameter is particularly error prone. 

• If one of the atmosphere parameters can be measured accurately in another way, the estimate of 

the other will be much more reliable. 

• If several observations are available, observations with as different object temperatures as 

possible should be selected. 

4.2. Sensitivity of object and sensor parameters 

The estimates of atmosphere parameters are virtually uncorrelated with the estimates of the sensor and 

object parameters. However, the sensor and object parameters are all clearly correlated, as is illustrated by 

the error surfaces in Figure 3. It is clear that we here have the same problem as mentioned earlier, that an 

error in one parameter can be compensated with an error in another one. Intuitively, this is expected, since 

all three parameters c, to , and s have the major effect of increasing signal energy at increasing parameter 

levels. 

5. SIMULATIONS 

If the observed signal is disturbed by noise, as in all practical cases, the atmospheric estimation and 

correction is of course degraded. Another factor that influences the quality is the number of bands used. In 

this section, we simulate a large number of observations in order to see how the performance degrades 

with increasing noise and fewer spectral bands. 

5.1. Test methodology 

The parameter estimations have been evaluated by simulations in the following way. 

1. Eight different noise levels have been selected, with the variances corresponding to no noise, 0, 

20, 40, 50, 60, 70, and 80 dB [µW per sr·cm
2
·µm] 

2. Atmosphere transmission and sky irradiance were simulated by MODTRAN using models for a 

Swedish summer’s day, as accounted for in Section 2. 

3. For each noise level, 200 random spectral signatures have been created in high spectral resolution 

(one sample per cm
−1

). The signatures were created by picking the parameters from uniform 

distributions in the following intervals: to ∈ [280 300], to ∈ [270 290], c ∈ [0.9 1.0], w ∈ [0.9 

1.1], and s ∈ [0.9 1.1]. 

4. Each of the signatures has been distorted by noise (additive white Gaussian noise). 

5. Nine different sensor models have been created, with 3, 5, 7, 9, 12, 15, 20, 30, and 40 spectral 

bands respectively. The response functions are Gaussians with FWHM = 2 · ∆λ, where ∆λ is the 

distance between each band’s center wavelength. The band centers are evenly spread out between 

8 + ∆λ and 11.5 − ∆λ µm. Note that the sensors with fewer bands will be less noisy. 

6. Each of the sensors sampled each of the 200 · 8 signatures, and the average absolute errors of the 

parameters were measured. 

This was repeated for four different cases, as described below. 
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5.2. Simulations using synthetic signatures 

We study four different cases, where s and w are known or unknown. From the analysis in the previous 

section, an unknown humidity is expected to give a larger error in the atmosphere temperature estimate, 

and an unknown sensor scale is expected to give larger errors in the estimates of the object parameters (to 

and c). 

• Case 1: Known scale and humidity. In these simulations, w and s were not randomly picked, but 

set to a known value (1.0). The results are illustrated in Figure 4 (top row), where the quality (or, 

rather, the error) of the estimated parameters is plotted against the number of spectral bands for 

different levels of noise. Two things are clear: (1) When the number of bands is too small, the 

estimation process is not provided with enough information, and (2) when the amount of noise is 

too large, the estimation apparently breaks down, and adding more bands does not help. For 

moderate noise levels (around 20 dB and less), the estimation, as expected, performs better for a 

larger number of bands. For these noise levels, 9 and 12 bands is enough to get an average error of 

less than 1 K in the atmosphere and object temperature estimate respectively, and more than 15 

bands does not give any significant improvement. 

• Case 2: Known scale, unknown humidity. In this simulation, w was randomly picked but s fixed 

(and known). The results, see Figure 4 (second row), are not much different from case 1, with the 

exception of the humidity estimate that is quite bad even for a large number of bands with small 

amounts of noise (between 0.13 and 0.16 for all noise levels and numbers of bands). The estimate 

of the atmosphere temperature is worse than for the case with known humidity – around five 

bands more are required for the same results. 

• Case 3: Unknown scale, known humidity. In this simulation, s was randomly picked and w fixed 

(and known). As expected, the quality of the estimates of the object temperature to is reduced, 

especially when the number of bands is less than 10. 

• Case 4: Unknown scale and humidity. In this simulation, s and w were randomly picked. As 

expected, the results are approximately the same as in case 3. 

5.2.1. Conclusion 

The simulations confirm the analysis from the previous section, and also indicate how the estimation 

quality varies with the number of bands. 

• 10 bands or more seem to be needed for accurate estimates. 

• Using more than 20 bands does not improve the estimation quality significantly. 

• The humidity is hard to estimate, even when using a large number of bands with small noise. 

• If the sensor scale is unknown, the estimation quality of the object parameters is reduced. 

5.3. Simulations using real signatures 

In order to evaluate a more realistic scenario, the simulations above have also been made using real 

signatures of vegetation. These signatures are laboratory-measured hemispherical reflection of grass, green 

leaves of birch and aspen, and dry/brown leaves of birch. The leaves are measured on both front and back 

sides. Instead of randomly choosing an emissivity constant, one of these seven signatures has been 

selected in the creation of each signature. The results are plotted in Figure 5, and commented as follows: 
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Figure 4. Estimation errors depending on the noise level and the number of bands. The 
observed objects are graybodies with random emissivities and temperature observed through 

an atmosphere with random temperature. Top row (case 1): The humidity scaling w and the 
global scaling factor s are assumed to be exactly known. Second row (case 2): The global 

scaling factor s is assumed to be exactly known. Third row (case 3): The humidity scaling w is 
assumed to be exactly known. Fourth row (case 4): Humidity and scaling unknown. In the two 

latter cases, the signal is scaled with a random scaling factor that is estimated. 
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• The humidity estimate is, as expected, quite bad (average error of 0.14–0.16 regardless of 

noise/number of bands). 

• The scale estimate is acceptable (average error less than 0.05) for noise levels of 20 dB and less 

and 10 bands or more. 

• The atmosphere temperature estimate is good (average error 2 K or less) as long as the number of 

bands is more than 5 and the noise is less than 40 dB. 

• At a noise level around 50 dB the estimation of atmosphere temperature breaks down, and also 

gets worse with increasing number of bands. 

 

Figure 5. Estimation error as a function of the noise level and the number of bands. The 
observed objects are randomly selected vegetation components with temperature observed 

through an atmosphere with random temperature. Top: Humidity and scale are fixed to known 
values. Bottom: Humidity and scale random (and unknown). 

6. CONCLUSION 

We have presented a method for atmospheric estimation in hyperspectral LWIR data. The method also 

involves the estimation of object parameters (temperature and emissivity) under the restriction that the 

emissivity is constant. The method is analyzed with respect to its sensitivity to noise and number of 

spectral bands. 

In conclusion, the method works well under favourable conditions, but several issues still need to be 

addressed (as is discussed below). Provided that the noise level is low enough, atmosphere and object 

temperatures can be estimated with a precision error of around 2 K, using the information from less than 

10 spectral bands. If the water vapour content of the atmosphere is unknown and/or the radiometric 

calibration of the sensor is inaccurate, the precision is of less quality. 
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